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Multiscale Hierarchical Image Decomposition and Refinements: Qualitative and
Quantitative Results\ast 

Wen Li\dagger , Elena Resmerita\ddagger , and Luminita A. Vese\dagger 

Abstract. The multiscale hierarchical decomposition method (MHDM) proposed in [E. Tadmor, S. Nezzar,
and L. Vese, Multiscale Model. Simul., 2 (2004), pp. 554--579] has been proven very appropriate
for denoising images with features at different scales and for scale separation. Extensions of it to
image deblurring or to time-dependent settings [E. Tadmor and P. Athavale, Inverse Probl. Imag-
ing, 35 (2009), pp. 693--710] have also been considered, showing convergence properties and more
applications. The recent paper [K. Modin, A. Nachman, and L. Rondi, Adv. Math., 346 (2019),
pp. 1009--1066] fills in further qualitative results even for nonlinear problems and introduces a tighter
version of MHDM with better convergence properties. The contribution of the present work is as
follows. First, we derive novel error estimates for MHDM and its tighter version. Second, we provide
rules for early stopping of the algorithms in the case of perturbed data, while still ensuring stable
approximations of the true image. Last but not least, we propose a refined version of the tighter
MHDM, which allows recovering structured images and promotes different features of the compo-
nents, as compared to the entire image. The theoretical results are validated by numerous numerical
experiments for image denoising and deblurring, which also assess the analyzed methods in terms of
rate of convergence, stopping rule, and quality of restoration.
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1. Introduction. Decomposing an image in its structure and texture has been challenging
from both mathematical modeling and computational viewpoints. Regarding modeling, the
reader is first referred to the book [26, Chapter 1], where the advantage of using wavelet expan-
sions versus Fourier series in image processing is clearly explained. The book also points out
the limitations of some function spaces of positive differentiability when reconstructing natural
images and proposes interesting alternatives, thus opening a door to numerous approaches.

1.1. Related work. The ROF total variation minimization model in [32], [33], so-called
(BV,L2), is the simplest and one of handiest decomposition methods of an image f \in L2(\Omega ),
aiming to find u\lambda \in BV (\Omega ) and v\lambda \in L2(\Omega ) that satisfy
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MULTISCALE IMAGE DECOMPOSITION AND REFINEMENTS 845

(1.1) (u\lambda , v\lambda ) = arg min
u+v=f

\bigl\{ 
\lambda \| v\| 2 + | u| BV (\Omega )

\bigr\} 
,

where \Omega \subseteq \BbbR 2 is a bounded and open set. While this approach is known to recover edges
in images well, it is, however, not suitable for denoising (possibly blurry) natural images
containing texture at different scales.

During the last two decades, finer and finer techniques have been developed to cope with
the structure complexity of natural images. An essential step forward in this direction has
been made with the (BV,G), (BV,F ), (BV,E) models in [26, Chap. 1] that propose more
appropriate norms for quantifying the oscillatory components of an image, in the sense that
functions which may have large oscillations still have small norm (which was not the case
when measuring their L2 norms). This finding, although brilliant as a concept, was numerically
burdensome because of the involved G,F,E spaces. Thus, it was naturally followed by various
strategies to ease the computational effort---see the series of papers [6, 7, 8, 9, 10], [42], [29],
[20], [25], where, e.g., helpful approximations of the above spaces were introduced. We would
like to mention also several interesting approaches for image decomposition based on wavelets,
such as [35], which deals with separating the texture from the piecewise smooth part by
employing two suitable dictionaries, and [15, 16], which use the Besov space B1

1(L
1(\Omega )) in the

models [42], [29], instead of the BV space. More recent models based on higher order total
variation functionals can be found in [40] and [34], the latter performing a decomposition into
components with different degrees of temporal regularity. Actually, there is a rich literature
on compelling variational image decomposition methods that separate cartoon and texture in
clean images, or cartoon, texture, and noise in noisy images, while iterative methods (e.g.,
the proximal type method [24]) seem to be seriously outnumbered. In this work, we restrict
ourselves to the references that are closely related to the current investigation.

When it comes to more complex images, one could opt for a multiscale decomposition
as in [31] or a decomposition of hierarchical nature as introduced in [37]---details will be
given later in this section. Separating cartoon and texture is highly dependent on the scale
\lambda from (1.1), in the sense that details in an image (usually part of the texture) can be seen
as cartoon at a refined scale, such as 2\lambda . Based on this idea, the authors of [37] propose
a representation of the input image as a sum of simpler images at different scales by the
multiscale hierarchical decomposition method (MHDM). An analogous process can be done
for blurred images, according to [38]. We would also like to recall the related prior work [36],
were the authors expressed MHDM using a small parameter \tau which goes to 0, and the
BV components provided by the MHDM converge to the solution of an integro-differential
equation. Unlike the ``zooming in"" concept mentioned above, the work [5] considers the
reversed procedure in the context of weighted total variation flow, that is, ``zooming out"":
One can first identify the smallest components in an image, with a fast denoising as a by-
product, and gradually recover also the large features.

A recent development of the method in [37] can be found in the paper [39], having as a
starting model the variational decomposition involving additionally the \| \cdot \| \ast norm (G norm)
for textures,

(1.2) (u\lambda , v\lambda ) = argmin
u,v

\bigl\{ 
\lambda \| f  - u - v\| 2 + | u| BV (\Omega ) + \| v\| \ast 

\bigr\} 
,D
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846 WEN LI, ELENA RESMERITA, AND LUMINITA A. VESE

rather than (1.1) which is the basis for the approaches in our work. Thus, the method of [39]
aims at capturing both structure and texture at different scales.

Multiscale hierarchical decomposition techniques have been successfully applied to a
plethora of problems related to graph theory [23], image registration [30], [27], compressed
sensing, deconvolution of the Helmholtz filter, and linear regression---see the Ph.D. thesis [43].

1.2. Preliminaries. Let us focus on the MHDM from [37, 38], to get closer to the methods
analyzed in this paper in the context of inverse problems arising in image processing. In fact,
the framework is more general and can be employed for other inverse problems as well.

Let T : L2(\Omega ) \rightarrow L2(\Omega ) be a bounded linear blurring operator which is ill-posed, where
\Omega \subseteq \BbbR 2 is a bounded and open set. Consider f \in L2(\Omega ) a blurred image. Recovering the true
image u reduces usually to solving the ill-posed equation

(1.3) Tu = f.

Assume that J : L2(\Omega ) \rightarrow [0,\infty ] is a seminorm which is finite on a Banach space X \subseteq L2(\Omega ).
We can think of X = BV (\Omega ) and of J as the total variation seminorm, but the results hold
also for more general spaces X and functions J . Let \| \cdot \| denote the L2(\Omega ) norm and \langle \cdot , \cdot \rangle 
the L2(\Omega ) inner product. In this context, solving the ill-posed problem (1.3) by regularization
amounts to imposing a priori constraints on the unknown u as a minimizer of

(1.4) min
u\in X

\{ \lambda \| Tu - f\| 2 + J(u)\} ,

where \lambda > 0.
In the current framework of X = BV (\Omega ) and J(u) = | u| BV (\Omega ), (1.4) is the classical total

variation minimization problem. Existence of minimizers of (1.4) is guaranteed if T does not
annihilate constants, as shown in [1].

Let T \ast denote the adjoint operator of T and \| \cdot \| \ast the dual of the functional J with respect
to the L2(\Omega ) scalar product, defined by

\| g\| \ast = sup
\varphi \in BV (\Omega )
J(\varphi )\not =0

\langle g, \varphi \rangle 
J(\varphi )

\in [0,\infty ] \forall g \in L2(\Omega ),

so that the usual duality holds:
\langle g, \varphi \rangle \leq J(\varphi )\| g\| \ast .

It is possible to show that a minimizer of (1.4) can be characterized in terms of the dual norm
\| \cdot \| \ast (see [38], inspired from [26] and [3]). Indeed, a minimizer u of (1.4) satisfies the following:

(i) \| T \ast f\| \ast \leq 1
2\lambda if and only if u is the trivial minimizer.

(ii) If 1
2\lambda < \| T \ast f\| \ast < \infty , then u is a minimizer if and only if \| T \ast (f  - Tu)\| \ast = 1

2\lambda and
\langle u, T \ast (f  - Tu)\rangle = J(u) 1

2\lambda .
In any case, we have that \| T \ast (f  - Tu)\| \ast is finite for a minimizer u.
The MHDM proposed in [37, 38] starts with the model (1.4) and constructs a multiscale

image decomposition in a hierarchical way, as described below.
Let \lambda 0 be a positive number and u0 be a solution of

min
u\in X

\{ \lambda 0\| Tu - f\| 2 + J(u)\} .D
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MULTISCALE IMAGE DECOMPOSITION AND REFINEMENTS 847

For k \geq 1, define the sequence (uk) \subset X with uk as a solution of

(1.5) min
u\in X

\{ \lambda k\| Tu - vk - 1\| 2 + J(u)\} 

with \lambda k = 2k\lambda 0 and vk - 1 = f  - 
\sum k - 1

j=0 Tuj , and thus f = Tu0 +Tu1 + \cdot \cdot \cdot +Tuk - 1 + vk - 1. By

denoting xk - 1 =
\sum k - 1

j=0 uj , one can rewrite procedure MHDM (see also [27]) as

(1.6) uk \in argmin
u\in X

\{ \lambda k\| T (u+ xk - 1) - f\| 2 + J(u)\} , k \geq 0,

where x - 1 = 0. It was shown in [38] that (Txk) converges to f in a weak sense as below,

lim
k\rightarrow \infty 

\| T \ast (f  - Txk)\| \ast = 0.

In the special case of T = I (identity operator), the sequence (xk) with xk =
\sum k

j=0 uj converges

even strongly to the true image f in the L2(\Omega ) norm if f lies in X = BV (\Omega ), as shown in [37].
One can actually obtain strong convergence of (xk) to f in L2(\Omega ) even when dropping the

BV (\Omega ) regularity for f , as proven in the interesting and inspiring work [27], where very fine
analysis results are shown in a more general setting. Moreover, [27] shows that (Txk) converges
strongly to f also in the case T \not = I and discusses the issue of convergence of the iterates xk
to a solution of Tu = f when T \not = I. Furthermore, it introduces a tighter hierarchical
decomposition method, where a penalization on xk = u0 + \cdot \cdot \cdot + uk is also enforced, and as
a consequence, convergence of (xk) with respect to a natural metric in BV (\Omega ) is guaranteed.
Namely, the tighter MHDM generates a sequence (uk) \subset X with

(1.7) uk \in argmin
u\in X

\{ \lambda k\| T (u+ xk - 1) - f\| 2 + \lambda kakJ(u+ xk - 1) + J(u)\} , k \geq 0,

where xk - 1 =
\sum k - 1

j=0 uj and x - 1 = 0. Clear improvements over the original MHDM are high-
lighted in subsections 7.1, 7.2, and 7.3.

In order to enable more details in the final restored image, we introduce a refinement of
the latter method by choosing a variable Rk functional in the last term of (1.7), which is
weaker than J . Thus, the refined tighter MHDM is formulated as

(1.8) uk \in argmin
u\in X

\{ \lambda k\| T (u+ xk - 1) - f\| 2 + \lambda kakJ(u+ xk - 1) +Rk(u)\} , k \geq 0,

where the parameters \lambda k and ak are chosen in a suitable way (see details in section 5). As
detailed theoretically in section 5 and numerically in subsection 7.4, respectively, this method
also converges to the true image and provides pretty sharp reconstructions of edges and fine
texture.

1.3. Contributions and outline of the current work. A first contribution of our work is
providing convergence rates for the data-fitting term \| Txk  - f\| , and thus for \| xk  - f\| in the
case of denoising, both for MHDM and for the tighter methods. It remains an open problem
to establish convergence rates for \| xk  - f\| for the deblurring case. In such a situation, one
needs to employ a so-called source condition, that is, a smoothness assumption on the solution
(see, e.g., [11] and [18] for the Bregman iteration method).D
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848 WEN LI, ELENA RESMERITA, AND LUMINITA A. VESE

As a second contribution, we analyze MHDM and its tighter version also in the case of
noisy data, when a typical behavior for ill-posed problems is observed due to the data error
propagation, namely the so-called semiconvergence: some distance between the iterates xk
and the solution has an initial decay, and then increases---compare to the Landweber (steepest
descent) method at [17, pp. 156--157] or to the Bregman iteration (augmented Lagrangian
method) in [28]. Therefore, in order to balance between accuracy and noise amplification,
we propose earlier stopping of the multiscale decompositions by a posteriori rules (Morozov
discrepancy principle) and by a priori rules.

Last but not least, we introduce and investigate a refinement of the tighter MHDM, in
the sense that the penalizations on the components uk and on the sums xk might be allowed
to be different, according to the features that need to be highlighted in each case.

The structure of this paper is as follows. After deriving error estimates for MHDM in sec-
tion 2, we provide in section 3 rules for early stopping of this algorithm in the case of perturbed
data, while still ensuring stable approximations of the true image (in the denoising case). Sec-
tion 4 deals with similar aspects for the tighter version of MHDM, while the refined MHDM
is presented in section 5. Discretizations of the Euler--Lagrange equations corresponding to
the tight and refined versions are proposed in section 6. All theoretical results are validated
in section 7 by several numerical experiments for image denoising and deblurring.

2. Error estimates for MHDM. In this section we establish an error estimate for the
residual \| Txk - f\| occurring in MHDM formulated at (1.6), that is, \| Txk - f\| = O(1/

\surd 
k + 1).

Clearly, an immediate consequence is the strong convergence of (Txk) to f in L2(\Omega ), thus
providing an alternative proof to the one by contradiction from [27, Theorem 2.1].

Throughout this study, we assume that there is a solution z \in X of (1.3).
It is known that (uk) is well-defined (see [38]), although uk might not be a unique solution

of the corresponding optimization problem.
By the definition of uk, one can write for any k \geq 0,

(2.1) \lambda k\| T (uk + xk - 1) - f\| 2 + J(uk) \leq \lambda k\| T (u+ xk - 1) - f\| 2 + J(u) \forall u \in BV (\Omega ).

Note that the following convention is used here: x - 1 = 0. By taking u = 0 and then
u = z  - xk - 1, one obtains for any k \geq 0

(2.2) \lambda k\| Txk  - f\| 2 + J(uk) \leq \lambda k\| Txk - 1  - f\| 2,

(2.3) \lambda k\| Txk  - f\| 2 + J(uk) \leq J(z  - xk - 1).

Note that J(0) = 0 yielded (2.2). Thus, one deduces from (2.2) the decreasing monotonicity
of the residual \| Txk  - f\| 2.

In what follows, we show the announced error estimate.

Proposition 2.1. The following estimate holds:

(2.4) \| Txk  - f\| 2 \leq 2J(z)

(k + 1)\lambda 0
\forall k \geq 0.

Consequently, limk\rightarrow \infty Txk = f in the L2(\Omega ) norm.D
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MULTISCALE IMAGE DECOMPOSITION AND REFINEMENTS 849

Proof. Since J is subadditive and uk = xk  - xk - 1, one has

J(z  - xk) - J(z  - xk - 1) \leq J(uk) \forall k \geq 0.

By using this inequality in (2.3), one obtains \lambda k\| Txk  - f\| 2 + J(z  - xk) \leq 2J(z  - xk - 1), that
is,

(2.5) \| Txk  - f\| 2 + 1

\lambda k
J(z  - xk) \leq 

2

\lambda k
J(z  - xk - 1) =

1

\lambda k - 1
J(z  - xk - 1),

where 2
\lambda k

= 1
\lambda k - 1

if k \geq 1. By writing (2.5) for indices 0, 1, . . . , k and summing up, one has

for any k \geq 0

(2.6) (k + 1)\| Txk  - f\| 2 + 1

\lambda k
J(z  - xk) \leq 

k\sum 
j=0

\| Txj  - f\| 2 + 1

\lambda k
J(z  - xk) \leq 

2

\lambda 0
J(z),

where the left inequality follows from the monotonicity of the data fidelity term and the right
one follows from x - 1 = 0. This yields (2.4).

Error estimates can be derived in the denoising case under more regularity on the true
image.

Corollary 2.2. Assume that T = I and f \in BV (\Omega ). Then

(2.7) \| xk  - f\| \leq 

\sqrt{} 
2J(f)

(k + 1)\lambda 0
= O(1/

\surd 
k + 1) \forall k \geq 0,

and thus, limk\rightarrow \infty xk = f in L2(\Omega ).

Proof. One applies Proposition 2.1, where f plays the role of the solution z \in BV (\Omega ).

Note that the upper bounds in (2.4) and (2.7) depend on the initial parameter \lambda 0, implying
that too small values of \lambda 0 yield quite large upper bounds, which are not desirable. This fits
the discussions in [37, section 2] and [38, section 2] that recommend choosing rather a larger
starting parameter, since it will generate proper decompositions of the original image, as
opposed to the case of a small \lambda 0 that will not be effective for a number of iterations, until a
large enough value for \lambda k = 2k\lambda 0 will be reached. The reader is referred also to the comments
on the parameters \lambda k in subsections 7.1 and 7.2.

Remark 2.3. For the sake of completeness, we prove below strong convergence of (Txk) to
f in the case of deblurring (T \not = I) by using the techniques developed in the original paper [37]
when T = I.

First, one can check that

(2.8)
k\sum 

j=0

\biggl[ 
\| Tuj\| 2 +

1

\lambda j
J(uj)

\biggr] 
= \| f\| 2  - \| vk\| 2, k \geq 0.

D
ow

nl
oa

de
d 

04
/0

8/
25

 to
 1

29
.2

.9
0.

12
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

850 WEN LI, ELENA RESMERITA, AND LUMINITA A. VESE

Note that v2k - 1 = Tu2k + v2k with Tu2k \rightarrow 0 as k \rightarrow \infty due to convergence of the series with
term \| Tuj\| 2---see (2.8). Thus, in order to show that vk \rightarrow 0 as k \rightarrow \infty , it is enough to prove
that v2k \rightarrow 0 as k \rightarrow \infty , as this would imply that also v2k - 1 \rightarrow 0.

It can be readily seen that the following holds: Since vk =
\sum 2k

j=k+1 Tuj + v2k, k \geq 1, one

has (v2k, v2k) = (v2k, vk) - 
\sum 2k

j=k+1(v2k, Tuj). Thus,

| (v2k, vk)| = | (v2k, f  - Txk)| = | (T \ast v2k, z  - xk)| 

\leq 1

\lambda 2k
[J(z) + J(xk)]

\leq 1

\lambda 2k
J(z) +

\lambda k

\lambda 2k

2k\sum 
j=k+1

1

\lambda j
J(uj).

The last sum converges to zero for k \rightarrow \infty due to convergence of the series with the corre-
sponding term (see (2.8)). Now,\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

2k\sum 
j=k+1

(v2k, Tuj)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 
2k\sum 

j=k+1

| (T \ast v2k, uj)| \leq 
1

\lambda 2k

2k\sum 
j=k+1

J(uj) \leq 
2k\sum 

j=k+1

1

\lambda j
J(uj),

which concludes the proof.

Remark 2.4. Problem (1.6) can be equivalently written as

(2.9) min
u\in X

\{ \lambda k\| Tu - f\| 2 + \lambda k\langle u, T \ast Txk - 1\rangle + J(u)\} ,

which involves a Tikhonov regularization functional and a linear term depending on all the
previous iterates. Thus, the computational effort for this problem is similar to the one for the
corresponding variational regularization with no additional linear term.

3. MHDM with perturbed data. In what follows we shall consider MHDM with noisy
data. As mentioned in the introduction, one has to stop the algorithm early, due to data error
propagation. First, we shall derive error estimates and then propose stopping rules which
ensure convergence of the residual to zero, when the noise level tends to zero. The reader is
referred also to [5] regarding a stopping rule for the continuous time, by means of the peak
signal-to-noise ratio.

While f denotes the exact data (the blurred image without noise), let f \delta \in L2(\Omega ) stand
for the noisy data (the blurred image with noise). That is, the following model is considered:

(3.1) f \delta = Tz + \eta ,

where \eta is additive Gaussian noise, z is the image to be recovered, and

(3.2) \| f  - f \delta \| \leq \delta , \delta > 0.

The method under investigation generates a sequence (uk) \subset X, where

(3.3) uk \in argmin
u\in X

\{ \lambda k\| Tu - vk - 1\| 2 + J(u)\} ,D
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with \lambda k = 2k\lambda 0 and vk - 1 = f \delta  - 
\sum k - 1

j=0 Tuj , and f \delta = Tu0 + Tu1 + \cdot \cdot \cdot + Tuk - 1 + vk - 1. By

denoting again xk - 1 =
\sum k - 1

j=0 uj , one has to find uk \in BV (\Omega ) as a minimizer of

(3.4) \lambda k\| T (u+ xk - 1) - f \delta \| 2 + J(u).

We shall consider first an a posteriori stopping criterion (that is, depending on the noise
level \delta and the measured data f \delta ), according to which the iterative procedure is stopped when
the norm of the misfit is compatible with the noise level. Second, an a priori choice (depending
only on \delta ) will be presented. The former type of rule is usually preferred, since it takes into
account the knowledge on the given data.

3.1. Discrepancy principle stopping rule. Let the following index depending on \delta and f \delta 

be defined as

(3.5) k\ast (\delta ) := max\{ k \in \BbbN : \| Txk  - f \delta \| 2 \geq \tau \delta 2\} for some \tau > 1.

We will see below that k\ast (\delta ) is well-defined.

Proposition 3.1. If (3.2) is satisfied, then the estimate

(3.6) \| Txk  - f \delta \| 2 \leq \delta 2 +
2J(z)

(k + 1)\lambda 0
\forall k \geq 0

holds, and the stopping index defined by (3.5) is finite. If (k\ast (\delta )) is unbounded as \delta \rightarrow 0, then
one has lim\delta \rightarrow 0 Txk\ast (\delta ) = f in the L2(\Omega ) norm.

Proof. One has for any k \geq 0,

(3.7) \lambda k\| T (uk + xk - 1) - f \delta \| 2 + J(uk) \leq \lambda k\| T (u+ xk - 1) - f \delta \| 2 + J(u) \forall u \in BV (\Omega ).

Again, by setting u = 0 and then u = z - xk - 1, it follows that \| Txk - f \delta \| 2 decreases when
k increases and

(3.8) \| Txk  - f \delta \| 2 + 1

\lambda k
J(uk) \leq \| f  - f \delta \| 2 + 1

\lambda k
J(z  - xk - 1) \leq \delta 2 +

1

\lambda k
J(z  - xk - 1).

Based on the summing up technique from the proof of Proposition 2.1, one obtains for any
k \geq 0,

(3.9) (k + 1)\| Txk  - f \delta \| 2 + 1

\lambda k
J(z  - xk) \leq (k + 1)\delta 2 +

2

\lambda 0
J(z),

which yields (3.6).
Note that k\ast (\delta ) is well-defined, since \| Txk - f \delta \| 2 decreases. Moreover, it is finite, as shown

next. By writing the last inequality for k = k\ast (\delta ), using (3.5), and neglecting a nonnegative
term, it follows that

(3.10) (k\ast (\delta ) + 1)\tau \delta 2 \leq (k\ast (\delta ) + 1)\delta 2 +
2

\lambda 0
J(z)D
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852 WEN LI, ELENA RESMERITA, AND LUMINITA A. VESE

and thus the stopping index is finite:

(3.11) k\ast (\delta ) \leq 2J(z)

\lambda 0(\tau  - 1)\delta 2
 - 1.

If (k\ast (\delta )) is unbounded, then (3.6) written for k = k\ast (\delta ) implies lim\delta \rightarrow 0 Txk\ast (\delta ) = f .

An immediate consequence of the proposition above is convergence of the reconstructions
to the original image, when the noise level tends to zero.

Corollary 3.2. Assume that T = I and f \in BV (\Omega ). Then lim\delta \rightarrow 0 xk\ast (\delta ) = f .

3.2. A priori stopping rule. In the inverse problems literature, a priori rules are of interest
in contexts where they yield better convergence rates than the a posteriori rules. Although it
is not clear if this is the case for MHDM, we also present an a priori stopping rule next, for
the sake of completeness.

Corollary 3.3. If the stopping index is chosen as k\ast (\delta ) \sim 1
\delta 2
, then \| Txk\ast (\delta )  - f\| = O(\delta ).

Consequently, \| xk\ast (\delta )  - f\| = O(\delta ) in the denoising case if f \in BV (\Omega ).

Proof. One writes (3.6) for k = k\ast (\delta ) and applies the choice k\ast (\delta ) \sim 1
\delta 2
.

4. A tighter multiscale hierarchical decomposition method. This section is devoted to
the tighter MHDM defined at (1.7). Error estimates and convergence results in both the
exact and the noisy data case are established in the spirit of the previous two sections, that
is, concerning the residual. An additional opportunity arises regarding the tighter method,
namely showing convergence of the sums xk of the components uj to the true image in the
general context of deblurring.

The paper [27] emphasizes that, besides some special situations (e.g., T = I), one usually
has only convergence of type Txk \rightarrow f , while convergence of the iterates xk to a solution of
Tu = f is not guaranteed. This motivates the authors of [27] to propose the tighter MHDM
with the merit that the sum of the generated components does converge to such a solution.
The reader is referred also to [43] regarding upper bounds for the error between the solution
of the operator equation and the components sum xk, when (xk) does not necessarily converge
to that solution.

Let (ak) be a sequence of nonnegative numbers such that

(4.1) lim
k\rightarrow \infty 

ak = 0 and ak \leq ak - 1 \forall k \geq 1.

Let \lambda 0 be a positive number and u0 be a solution of

min
u\in X

\{ \lambda 0\| Tu - f\| 2 + \lambda 0a0J(u) + J(u)\} 

with J and X as above.
Construct a sequence (uk) \subset X with uk as a solution of

(4.2) min
u\in X

\{ \lambda k\| T (u+ xk - 1) - f\| 2 + \lambda kakJ(u+ xk - 1) + J(u)\} ,

where xk - 1 =
\sum k - 1

j=0 uj and (\lambda k) \subset (0,\infty ) satisfies the relaxed inequality

(4.3) 2\lambda k - 1 \leq \lambda k \forall k \geq 0,D
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rather than the equality 2\lambda k - 1 = \lambda k. We denote again vk - 1 = f  - 
\sum k - 1

j=0 Tuj , and thus
f = Tu0 + Tu1 + \cdot \cdot \cdot + Tuk - 1 + vk - 1.

According to [27], the sequence (Txk) converges to f if

(4.4) lim sup
k\rightarrow \infty 

2k

\lambda k
< \infty .

Note that the following inequalities hold \forall k \geq 0 (similarly to the case of the original
method when ak = 0):

\lambda k\| Txk  - f\| 2 + \lambda kakJ(xk) + J(uk) \leq \lambda k\| Txk - 1  - f\| 2 + \lambda kakJ(xk - 1),(4.5)

\lambda k\| Txk  - f\| 2 + \lambda kakJ(xk) + J(uk) \leq \lambda kakJ(z) + J(z  - xk - 1).(4.6)

It is interesting to note that inequality (4.5) implies the decreasing monotonicity of the
residual-like \| Txk  - f\| 2 + akJ(xk) rather than of the residual \| Txk  - f\| 2, since ak \leq ak - 1

and J(uk) \geq 0 for any k \geq 0.
We show below an error estimate for the residual and hence for \| xk  - f\| in the case of

denoising, based on the summability of (ak) and on (4.3), the latter implying (4.4). First,
denote

(4.7)
\infty \sum 
k=0

ak < \infty .

Proposition 4.1. Let conditions (4.1) and (4.3) be satisfied. Then the following estimate
holds:

(4.8) \| Txk  - f\| 2 + akJ(xk) \leq 

\left(  k\sum 
j=0

aj

\right)  J(z)

k + 1
+

2J(z)

(k + 1)\lambda 0
\forall k \geq 0.

Moreover, if (4.7) is verified, then limk\rightarrow \infty Txk = f holds. If additionally f \in BV (\Omega ) and
T = I, then limk\rightarrow \infty xk = f in L2(\Omega ).

Proof. The proof resembles the one for Proposition 2.1, by taking into account that
2
\lambda k

\leq 1
\lambda k - 1

.

Recall that z \in X is a J minimizing solution of Tu = f if

z \in argmin
Tx=f

J(x).

Additionally, recall that the metric d : BV (\Omega )\times BV (\Omega ) \rightarrow [0,\infty ) given by

(4.9) d(u, v) = \| u - v\| L1 + | J(u) - J(v)| 

provides the so-called strict convergence for images in the BV (\Omega ) space [2, p. 125], which
incorporates both the weak\ast convergence and the one with respect to the | J(u) - J(v)| term
in (4.9)---see also [18]. Namely, the following holds:

d(uk, u) \rightarrow 0 if and only if (uk
w\ast 
\rightarrow u and J(uk) \rightarrow J(u)).

A few considerations concerning the parameters involved in the tighter version and their
role in deriving convergence of the iterates are in order. Estimate (4.8) shows thatD
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J(xk) \leq 

\left(  k\sum 
j=0

aj

\right)  J(z)

ak(k + 1)
+

2J(z)

ak(k + 1)\lambda 0
, k \geq 0,

when ak > 0 \forall k \geq 0, where z solves Tu = f . In order for (J(xk)) to be bounded, one
needs not only

\sum \infty 
k=0 ak < \infty but also boundedness of the sequence with term 1

ak(k+1) , that is,
1

k+1 = O(ak), which yields divergence of the series with term ak (not desired). This suggests
that a stronger condition on the parameters is indeed necessary to ensure boundedness of
(J(xk)) and convergence of (xk) on subsequences.

As shown in [27, Theorem 2.5], the stronger condition

(4.10) lim sup
k\rightarrow \infty 

2k

\lambda kak
= 0,

with (ak) \subset (0,\infty ), guarantees weak convergence of (xk) (on subsequences) to a solution \^z
of Tu = f , which minimizes J over the set of solutions. Moreover, J(xk) \rightarrow J(\^z) holds on
subsequences.

For the sake of completeness, in the following we formulate the abovementioned conver-
gence result for the iterates (xk).

Proposition 4.2. Let conditions (4.1), (4.3), and (4.10) be satisfied. Then the sequence
(xk) defined above converges on subsequences to a J-minimizing solution of Tu = f in the
sense of the metric (4.9).

Proof. Recall the main argument of the proof for [27, Theorem 2.5],

(4.11) J(z  - xk) \leq 2k+1J(z), k \geq 0.

Using (4.11) in (4.6) yields

(4.12) J(xk) \leq J(z) +
J(z  - xk - 1)

\lambda kak
\leq J(z) +

2kJ(z)

\lambda kak
, k \geq 0,

which implies lim supk\rightarrow \infty J(xk) \leq J(z). Now boundedness of J(xk) and (Txk) in the total
variation setting implies boundedness of (xk) in BV (\Omega ) and, thus, existence of a subsequence
(denoted again (xk)) which converges weakly\ast to some \=z \in BV (\Omega ). With standard BV (\Omega )
arguments, one can assume that the subsequence converges also weakly in L2(\Omega ). Since
T is linear and bounded, it is also weakly continuous. Therefore, (Txk) converges weakly
to T \=z. This must be equal to f , as Txk \rightarrow f . Thus, \=z is also a solution of Tu = f .
Note that the inequality lim infk\rightarrow \infty J(xk) \geq J(\=z) follows from the lower semicontinuity of J .
Since lim supk\rightarrow \infty J(xk) \leq J(\=z) (by setting the solution z = \=z in the corresponding inequality
above), one has limk\rightarrow \infty J(xk) = J(\=z) on a subsequence of (xk). Actually, \=z is a J minimiz-
ing solution of Tu = f , since J(\=z) \leq lim infk\rightarrow \infty J(xk) \leq lim supk\rightarrow \infty J(xk) \leq J(z), whenever
Tz = f . Thus, a subsequence of (xk) converges strictly in BV (\Omega ) to a J minimizing solution
of Tu = f .

4.1. The tighter version of the MHDM with perturbed data. Suppose that noisy data
f \delta satisfying (3.2) are given.D
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Thus, one aims at finding minimizers uk \in BV (\Omega ) of

(4.13) \lambda k\| T (u+ xk - 1) - f \delta \| 2 + \lambda kakJ(u+ xk - 1) + J(u)

and at investigating convergence properties for (Txk) and (xk). Consider ak > 0 for any
k \geq 0.

From (4.13) it follows that

\lambda k\| Txk  - f \delta \| 2 + \lambda kakJ(xk) + J(uk) \leq \lambda k\| Txk - 1  - f \delta \| 2 + \lambda kakJ(xk - 1),(4.14)

\lambda k\| Txk  - f \delta \| 2 + \lambda kakJ(xk) + J(uk) \leq \lambda k\delta 
2 + \lambda kakJ(z) + J(z  - xk - 1).(4.15)

Note that \| Txk  - f \delta \| 2 + akJ(xk) is decreasing due to (4.14) and to ak \leq ak - 1.
Consider the stopping index by a discrepancy rule of the form

(4.16) k\ast (\delta ) := max\{ k \in \BbbN : \| Txk  - f \delta \| 2 + akJ(xk) \geq \tau \delta 2\} for some \tau > 1.

One can formulate and prove a convergence result as for the MHDM.

Proposition 4.3. Let conditions (3.2), (4.1), and (4.3) be satisfied. Then the following
estimate holds:

(4.17) \| Txk  - f \delta \| 2 + akJ(xk) \leq \delta 2 +

\left(  k\sum 
j=0

aj

\right)  J(z)

k + 1
+

2J(z)

(k + 1)\lambda 0
\forall k \geq 0.

Moreover, if (4.7) is verified, then the stopping index defined by (4.16) is finite. Additionally,
1. if (k\ast (\delta )) is unbounded, then lim\delta \rightarrow 0 Txk\ast (\delta ) = f and lim\delta \rightarrow 0 ak\ast (\delta )Jxk\ast (\delta ) = 0,

2. if the stopping index is chosen as k\ast (\delta ) \sim 1
\delta 2
, then

\| Txk\ast (\delta )  - f\| 2 + ak\ast (\delta )J(xk\ast (\delta )) = O(\delta 2).

Proof. One uses J(z  - xk) - J(z  - xk - 1) \leq J(uk)\forall k \geq 0 in (4.6) to obtain

\lambda k\| Txk  - f \delta \| 2 + J(z  - xk) + \lambda kakJ(xk) \leq \lambda k\delta 
2 + \lambda kakJ(z) + 2J(z  - xk - 1),

which yields

\| Txk  - f \delta \| 2 + akJ(xk) +
1

\lambda k
J(z  - xk) \leq \delta 2 + akJ(z) +

2

\lambda k
J(z  - xk - 1)(4.18)

\leq \delta 2 + akJ(z) +
1

\lambda k - 1
J(z  - xk - 1),

as 2
\lambda k

\leq 1
\lambda k - 1

if k \geq 1. By writing (4.18) for indices 0, 1, . . . , k and summing up, one has for

any k \geq 0

(k + 1)\| Txk  - f \delta \| 2 + (k + 1)akJ(xk) +
1

\lambda k
J(z  - xk) \leq 

k\sum 
j=0

\| Txj  - f \delta \| 2 +
k\sum 

j=0

ajJ(xj)

+
1

\lambda k
J(z  - xk)

\leq (k + 1)\delta 2 +

\left(  k\sum 
j=0

aj

\right)  J(z) +
2

\lambda 0
J(z),
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where the first inequality is based on the monotonicity of the term \| Txk  - f \delta \| 2 + akJ(xk).
This yields (4.17) when dividing by k + 1.

In the case of the discrepancy principle rule, by replacing k = k\ast (\delta ) in the last inequality
and using (4.16) it follows that

(4.19) k\ast (\delta ) \leq 1

(\tau  - 1)\delta 2

\left[  \left(  k\sum 
j=0

aj

\right)  J(z) +
2J(z)

\lambda 0

\right]   - 1.

Thus, the stopping index k\ast (\delta ) is finite for any arbitrary but fixed \delta .
If (k\ast (\delta )) is unbounded, then (4.17) written for k = k\ast (\delta ) implies lim\delta \rightarrow 0 Txk\ast (\delta ) = f , that

is, statement 1 holds.
Statement 2 follows from (4.17) written for k\ast (\delta ) chosen a priori as above.

4.2. Convergence of the iterates in the case of noisy data. In what follows, we focus
on convergence of the iterates (xk) when T \not = I. To this end, we would like to show that

(4.20) lim sup
\delta \rightarrow 0

J(xk(\delta )) \leq J(z)

for some stopping index k(\delta ).
From (4.15) one has

(4.21) J(xk) \leq 
\delta 2

ak
+ J(z) +

J(z  - xk - 1)

\lambda kak
\forall k \geq 0.

First, we propose upper bounds for the term J(z  - xk - 1) as follows.

Proposition 4.4. Let conditions (3.2), (4.1), and (4.3) hold. Then

(4.22) J(z  - xk) \leq 2k+1

\biggl( 
\delta 2

ak+1
+ J(z)

\biggr) 
\forall k \geq 0.

Proof. By letting k = 0 in (4.15) and taking into account that x0 = u0, x - 1 = 0, one has

J(x0) \leq 
\delta 2\lambda 0

1 + \lambda 0a0
+ J(z) \leq \delta 2

a0
+ J(z),

which yields (4.22) in this particular instance since J(z  - x0) \leq J(z) + J(x0) and a0 \geq a1.
Now fix k \geq 1. If

(4.23) J(xk) \leq 
\delta 2

ak
+ J(z),

then (4.22) is verified since

J(z  - xk) \leq J(z) + J(xk) \leq 
\delta 2

ak
+ 2J(z) \leq \delta 2

ak+1
+ 2J(z) \leq 2k+1

\biggl( 
\delta 2

ak+1
+ J(z)

\biggr) 
.D
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Otherwise, let k0 with k > k0 \geq 0 be the largest natural number for which

(4.24) J(xk0) \leq 
\delta 2

ak0
+ J(z)

holds. By using

J(xk) >
\delta 2

ak
+ J(z)

in (4.15), one derives J(uk) \leq J(z  - xk - 1). This and J(z  - xk) \leq J(uk) + J(z  - xk - 1) yield

J(z  - xk) \leq 2J(z  - xk - 1) \forall k \geq k0 + 1.

Thus,

J(z  - xk) \leq 2J(z  - xk - 1) \leq \cdot \cdot \cdot \leq 2k - k0J(z  - xk0)

\leq 2k - k0 (J(xk0) + J(z))

\leq 2k - k0

\biggl( 
\delta 2

ak0
+ 2J(z)

\biggr) 
\leq 2k+1 - k0

\biggl( 
\delta 2

ak0
+ J(z)

\biggr) 
\leq 2k+1

\biggl( 
\delta 2

ak+1
+ J(z)

\biggr) 
,

where ak0 \geq ak+1\geq 0, k  - k0 + 1 \leq k + 1 and (4.24) were employed to obtain the last two
inequalities.

We show now (4.20).

Corollary 4.5. Let conditions (3.2), (4.1), and (4.3) hold. Then

(4.25) J(xk) \leq 
\biggl( 
\delta 2

ak
+ J(z)

\biggr) \biggl( 
2k

\lambda kak
+ 1

\biggr) 
\forall k \geq 0.

Proof. We employ (4.22) (written for k  - 1 instead of k) in inequality (4.21),

J(xk) \leq 
\delta 2

ak
+ J(z) +

J(z  - xk - 1)

\lambda kak
\leq \delta 2

ak
+ J(z) +

2k

\lambda kak

\biggl( 
\delta 2

ak
+ J(z)

\biggr) 
,

which reduces to (4.25).

Remark 4.6. Letting \delta = 0 in (4.25) recovers precisely formula (4.12) of the exact data
case.

In what follows, we formulate the result on convergence of the iterates.

Corollary 4.7. Let conditions (3.2), (4.1), (4.3), (4.10), and (4.7) hold, and assume that
\delta 2

ak\ast (\delta )
\rightarrow 0 as \delta \rightarrow 0, when (k\ast (\delta )) is chosen according to one of the following rules:D
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1. a priori as k\ast (\delta ) \sim 1
\delta 2
.

2. via the discrepancy principle (4.16). Additionally, let (k\ast (\delta )) be unbounded.
Then (4.20) holds and (x(k\ast (\delta ))) converges strictly on a subsequence to a J minimizing solution
of Tu = f .

Proof. We obtain (4.20) by writing (4.25) for k = k\ast (\delta ) and using the assumptions on the
involved sequences. As in Proposition 4.2, one obtains strict convergence of a subsequence of
(xk\ast (\delta )) to a solution of Tu = f which minimizes J .

Remark 4.8. A stopping index of the form k\ast (\delta ) \sim 1
\delta 2

yields also lim\delta \rightarrow 0 Txk\ast (\delta ) = f , as
one can see from (4.17).

Remark 4.9. The sequences (\lambda k) and (ak) should be chosen to satisfy assumptions (4.1),
(4.3), (4.10), and (4.7). Here is an example in this sense:

ak =
1

(k + 1)3/2
, \lambda k = 3k, k \geq 0.

5. A refinement of the tight MHDM. Recall that z is a solution of Tu = f .
One can refine (4.2) by defining a sequence (uk) \subset X with uk as a solution of

(5.1) min
u\in X

\{ \lambda k\| T (u+ xk - 1) - f\| 2 + \lambda kakJ(u+ xk - 1) +Rk(u)\} , k \geq 0,

where (\lambda k) \subset (0,\infty ) satisfies (4.3) and (4.10). That is, the regularizer J : H \rightarrow [0,\infty ) remains
the same in all iterations, while the regularizer on the component uk will be updated at each
iteration. Here J is allowed to be any function which is bounded from below, while each
Rk : H \rightarrow \BbbR \cup \{ \infty \} is a seminorm and is weakly lower semicontinuous. Well-definedness of
minimizers uk is guaranteed due to the coercivity of the terms containing T and J , as well as
due to the lower semicontinuity of the functional that is minimized.

We propose the following class of functions Rk and J that make method (5.1) work:

(5.2) Rk(u) \leq Rk - 1(u) \forall u \in X, \forall k = 1, 2, . . . ,

(5.3) Rk(u) \leq cJ(u) \forall u \in X,\forall k \in \BbbN ,

for some positive constant c > 0.
Clearly, the case when R is different from the penalty J is the interesting one in this

section. Due to condition (5.3), the penalty Rk is a weaker one, thus we allow the new
component uk to be less smooth than xk - 1. For instance, choosing for Rk a seminorm that
encourages oscillations (such as \| \cdot \| \ast which coincides with the seminorm in the Sobolev space
G = \.W - 1,\infty (\Omega ) of negative exponent), we encourage more details or texture components to
be recovered in the final restored image.

The following estimate can be derived as in section 4, implying convergence of (Txk) to f
when (4.7) is verified.

Proposition 5.1. Let conditions (5.2) and (5.3) be satisfied. Then the following estimate
holds:

(5.4) \| Txk  - f\| 2 + akJ(xk) \leq 

\left(  k\sum 
j=0

aj

\right)  J(z)

k + 1
+

2R0(z)

(k + 1)\lambda 0
\forall k \geq 0.
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More convergence results can be obtained under the additional assumptions on the involved
parameters.

Proposition 5.2. If conditions (4.10), (4.7), (5.2), and (5.3) hold, then

lim sup
k\rightarrow \infty 

J(xk) \leq J(z).

Moreover, (xk) converges strictly on subsequences to a solution of Tu = f which minimizes
J .

Proof. By considering (5.1) for u = z  - xk - 1, one has

(5.5) \lambda k\| Txk  - f\| 2 + \lambda kakJ(xk) +Rk(uk) \leq \lambda kakJ(z) +Rk(z  - xk - 1) k = 1, 2, . . . ,

and thus, according to (5.2),

(5.6) J(xk) \leq J(z) +
Rk(z  - xk - 1)

\lambda kak
\leq J(z) +

Rk - 1(z  - xk - 1)

\lambda kak
.

We claim that

(5.7) Rk(z  - xk) \leq 2k+1cJ(z).

By letting k = 0 in (5.5), one obtains \lambda 0a0J(x0) +R0(x0) \leq \lambda 0a0J(z) +R0(z). Since u0 = x0
and (5.3) holds, it follows that (1/c+ \lambda 0a0)R0(x0) \leq (\lambda 0a0 + c)J(z), that is, R0(x0) \leq cJ(z),
which implies R0(z  - x0) \leq R0(z) +R0(x0) \leq 2cJ(z).

Now fix k \geq 1. If

(5.8) Rk(xk) \leq cJ(z),

then this combined with the subadditivity of Rk and (5.3) yields (5.7). Otherwise, let k0 with
k > k0 \geq 0 be the largest positive integer such that

Rk0(xk0) \leq cJ(z).

Employing
Rk(xk) > cJ(z)

and Rk(xk) \leq cJ(xk) in (5.5) yields Rk(uk) \leq Rk(z - xk - 1). Combining this with Rk(z - xk) \leq 
Rk(uk) +Rk(z  - xk - 1) and (5.2), one obtains

Rk(z  - xk) \leq 2Rk(z  - xk - 1) \leq 2Rk - 1(z  - xk - 1) \cdot \cdot \cdot \leq 2k - k0Rk0(z  - xk0)

\leq 2k - k0+1J(z) \leq 2k+1cJ(z).

Thus, the claim is proved. Using this in (5.6) and taking into account (4.10) yield

lim sup
k\rightarrow \infty 

J(xk) \leq J(z).

One can define also stopping rules as in the previous sections and obtain similar results.
Moreover, subsection 6.2 contains the discretization of the refined version of tight MHDM
while subsection 7.4 presents numerical results with this refinement version when J is the
total variation and Rk = \| \cdot \| \ast .D
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6. Discretization of Euler--Lagrange equations of the tighter version and its refinement.

6.1. The tight MHDM. The discretization of the Euler--Lagrange equation at each step
of MHDM has been given in [38] when J(u) = | u| BV (\Omega ) \approx 

\int 
\Omega 

\sqrt{} 
\epsilon 2 + | \nabla u| 2dx. Thus, J is

regularized using a small parameter \epsilon > 0, becoming differentiable at points where | \nabla u| = 0.
In this section, the discretization of tighter MHDM is elaborated using the same choice for

J , inspired from image restoration, and a similar finite difference scheme inspired from [41].
For one step, the Euler--Lagrange equation associated with the minimization from (4.13) is

T \ast (T (u+ xk - 1) - f \delta ) =
ak
2
div

\Biggl( 
\nabla (u+ xk - 1)\sqrt{} 

\epsilon 2 + | \nabla (u+ xk - 1)| 2

\Biggr) 
(6.1)

+
1

2\lambda k
div

\Biggl( 
\nabla u\sqrt{} 

\epsilon 2 + | \nabla u| 2

\Biggr) 
in \Omega ,

\nabla u \cdot \vec{}n = 0 on \partial \Omega ,(6.2)

where \vec{}n is the exterior unit normal to the boundary \partial \Omega , k \geq 0 with x - 1 = 0. Using the
gradient descent scheme to solve the minimization problem, we are solving the following
dynamic PDE in u = uk:

\partial u

\partial t
+ T \ast (T (u+ xk - 1) - f \delta ) =

ak
2
div

\Biggl( 
\nabla (u+ xk - 1)\sqrt{} 

\epsilon 2 + | \nabla (u+ xk - 1)| 2

\Biggr) 

+
1

2\lambda k
div

\Biggl( 
\nabla u\sqrt{} 

\epsilon 2 + | \nabla u| 2

\Biggr) 
in \Omega \times [0,\infty ),

(6.3)

u = f \delta  - Txk - 1 on \partial \Omega and t = 0.(6.4)

After discretizing the space domain with grid size h, and the time interval with time step \Delta t,
unij represents the value of u at (ih, jh) and time n\Delta t. The finite differences method is applied
to solving the above problem. To simplify the expressions, the following notations are used:

\nabla x
+uij =

ui+1,j  - uij
h

, \nabla x
 - uij =

uij  - ui - 1,j

h
,

\nabla y
+uij =

ui,j+1  - uij
h

, \nabla y
 - uij =

uij  - ui,j - 1

h
,

c(uij) =
1\sqrt{} 

\epsilon 2 + (\nabla x
+uij)

2 + (\nabla y
+uij)

2
.

Similarly, u can be replaced with w = u+xk - 1 in the above equations to obtain\nabla x
+wij , \nabla x

 - wij ,
\nabla y

+wij , \nabla y
 - wij , and c(wij). Then (6.3) can be solved using the finite difference method as

\partial uij
\partial t

=  - T \ast (Twij  - f \delta 
ij) +

ak
2
[\nabla x

 - (c(wij)\nabla x
+wij) +\nabla y

 - (c(wij)\nabla y
+wij)]

+
1

2\lambda k
[\nabla x

 - (c(uij)\nabla x
+uij) +\nabla y

 - (c(uij)\nabla 
y
+uij)].

(6.5)
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By applying a semi-implicit time marching scheme, we have

un+1
ij  - unij

\Delta t
=  - T \ast (Twn

ij  - f \delta 
ij)

+
ak
2h2

[c(wn
ij)(w

n
i+1,j  - wn+1

ij ) - c(wn
i - 1,j)(w

n+1
ij  - wn

i - 1,j)

+ c(wn
ij)(w

n
i,j+1  - wn+1

ij ) - c(wn
i,j - 1)(w

n+1
ij  - wn

i,j - 1)]

+
1

2\lambda kh2
[c(unij)(u

n
i+1,j  - un+1

ij ) - c(uni - 1,j)(u
n+1
ij  - uni - 1,j)

+ c(unij)(u
n
i,j+1  - un+1

ij ) - c(uni,j - 1)(u
n+1
ij  - uni,j - 1)],

(6.6)

where wn = un + xk - 1. Therefore, the discretization becomes

un+1
ij  - unij

\Delta t
=  - T \ast (Twn

ij  - f \delta 
ij)

+
ak
2h2

[c(wn
ij)w

n
i+1,j + c(wn

i - 1,j)w
n
i - 1,j + c(wn

ij)(w
n
i,j+1 + c(wn

i,j - 1)w
n
i,j - 1

 - (c(wn
ij) + c(wn

i - 1,j) + c(wn
ij) + c(wn

i,j - 1))xk - 1,ij

 - (c(wn
ij) + c(wn

i - 1,j) + c(wn
ij) + c(wn

i,j - 1))u
n+1
ij ]

+
1

2\lambda kh2
[c(unij)u

n
i+1,j + c(uni - 1,j)u

n
i - 1,j + c(unij)(u

n
i,j+1 + c(uni,j - 1)u

n
i,j - 1

 - (c(unij) + c(uni - 1,j) + c(unij) + c(uni,j - 1))u
n+1
ij ].

(6.7)

Then un+1
ij can be obtained by

un+1
ij =

unij  - \Delta tT \ast (Twn
ij  - f \delta 

ij) +
\Delta tak
2h2 [\Xi n

w  - cnwxk - 1,ij ] +
\Delta t

2\lambda kh2\Xi 
n
u

1 + \Delta tak
2h2 cnw + \Delta t

2\lambda kh2 cnu
,(6.8)

where

\Xi n
w = c(wn

ij)w
n
i+1,j + c(wn

i - 1,j)w
n
i - 1,j + c(wn

ij)w
n
i,j+1 + c(wn

i,j - 1)w
n
i,j - 1,

\Xi n
u = c(unij)u

n
i+1,j + c(uni - 1,j)u

n
i - 1,j + c(unij)u

n
i,j+1 + c(uni,j - 1)u

n
i,j - 1,

cnw = c(wn
ij) + c(wn

i - 1,j) + c(wn
ij) + c(wn

i,j - 1),

cnu = c(unij) + c(uni - 1,j) + c(unij) + c(uni,j - 1).

6.2. A refinement of the tight MHDM. In this case, J remains the total variation and
we let Rk(u) = | | u| | \ast , i.e., its dual weaker norm, hoping that more details and texture are
recovered. Then the refinement of the tight MHDM becomes

(6.9) min
u\in X

\{ \lambda k\| T (u+ xk - 1) - f\| 2 + \lambda kakJ(u+ xk - 1) + | | u| | \ast \} , k \geq 0,

where | | u| | \ast = supJ(\varphi )\not =0
\langle u,\varphi \rangle 
J(\varphi ) , and J(\varphi ) = | \varphi | BV (\Omega ) \approx 

\int 
\Omega 

\sqrt{} 
\epsilon 2 + | \nabla \varphi | 2dx. We employ the

numerical scheme from [13] for dealing with the \| \cdot \| \ast norm.D
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Denote F (\varphi ) = \langle u,\varphi \rangle 
J(\varphi ) . Suppose u is given; then the associated Euler--Lagrange equation

associated with supJ(\varphi )\not =0 F (\varphi ) is

u\int 
\Omega 

\sqrt{} 
\epsilon 2 + | \nabla \varphi | 2dx

+

\int 
\Omega u\varphi dx

(
\int 
\Omega 

\sqrt{} 
\epsilon 2 + | \nabla \varphi | 2dx)2

div

\Biggl( 
\nabla \varphi \sqrt{} 

\epsilon 2 + | \nabla \varphi | 2

\Biggr) 
= 0 in \Omega ,(6.10)

\nabla \varphi \cdot \vec{}n = 0 on \partial \Omega .(6.11)

Equation (6.10) can also be written as

(6.12) u+

\int 
\Omega u\varphi dx\int 

\Omega 

\sqrt{} 
\epsilon 2 + | \nabla \varphi | 2dx

div

\Biggl( 
\nabla \varphi \sqrt{} 

\epsilon 2 + | \nabla \varphi | 2

\Biggr) 
= 0 in \Omega .

Using the gradient ascent method to obtain \{ \varphi : supJ(\varphi )\not =0 F (\varphi )\} , we are solving

(6.13)
\partial \varphi 

\partial t
= F \prime (\varphi (t)) t \in [0,\infty ),

which means we are solving the following PDE:

(6.14)
\partial \varphi 

\partial t
= u+

\int 
\Omega u\varphi dx\int 

\Omega 

\sqrt{} 
\epsilon 2 + | \nabla \varphi | 2dx

div

\Biggl( 
\nabla \varphi \sqrt{} 

\epsilon 2 + | \nabla \varphi | 2

\Biggr) 
in \Omega \times [0,\infty ).

Once \varphi is obtained, the associated Euler--Lagrange equation for minimizing the refinement
of the tight MHDM as shown in (6.9) is

(6.15)

T \ast (T (u+ xk - 1) - f \delta ) =
ak
2
div

\Biggl( 
\nabla (u+ xk - 1)\sqrt{} 

\epsilon 2 + | \nabla (u+ xk - 1)| 2

\Biggr) 
 - 1

2\lambda k

\varphi \int 
\Omega 

\sqrt{} 
\epsilon 2 + | \nabla \varphi | 2dx

in \Omega ,

\nabla u \cdot \vec{}n = 0 on \partial \Omega .(6.16)

Applying the gradient descent scheme to solving this minimization problem, we have

\partial u

\partial t
+ T \ast (T (u+ xk - 1) - f \delta ) =

ak
2
div

\Biggl( 
\nabla (u+ xk - 1)\sqrt{} 

\epsilon 2 + | \nabla (u+ xk - 1)| 2

\Biggr) 
 - 1

2\lambda k

\varphi \int 
\Omega 

\sqrt{} 
\epsilon 2 + | \nabla \varphi | 2dx

in \Omega \times [0,\infty ).

(6.17)

We use finite differences and semi-implicit time marching to solve (6.14) and (6.17) iteratively
as follows:

\varphi n+1
ij =

\varphi n
ij +\Delta tunij +

\Delta t
h2

\int 
\Omega un

ij\varphi 
n
ijdx\int 

\Omega 

\surd 
\epsilon 2+| \nabla \varphi n

ij | 2dx
\Xi n
\varphi 

1 + \Delta t
h2

\int 
\Omega un

ij\varphi 
n
ijdx\int 

\Omega 

\surd 
\epsilon 2+| \nabla \varphi n

ij | 2dx
cn\varphi 

,(6.18)

un+1
ij =

unij  - \Delta tT \ast (Twn
ij  - f \delta 

ij) +
\Delta tak
2h2 [\Xi n

w  - cnwxk - 1,ij ] - \Delta t
2\lambda k

\varphi n+1
ij\int 

\Omega 

\sqrt{} 
\epsilon 2+| \nabla \varphi n+1

ij | 2dx

1 + \Delta tak
2h2 cnw

,(6.19)
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where

\Xi n
\varphi = c(\varphi n

ij)\varphi 
n
i+1,j + c(\varphi n

i - 1,j)\varphi 
n
i - 1,j + c(\varphi n

ij)\varphi 
n
i,j+1 + c(\varphi n

i,j - 1)\varphi 
n
i,j - 1,

cn\varphi = c(\varphi n
ij) + c(\varphi n

i - 1,j) + c(\varphi n
ij) + c(\varphi n

i,j - 1).

In addition to the procedures above, other algorithms can also be applied to solving the
tight MHDM and its refinement, such as the generic proximal algorithm [14], the Douglas--
Rachford algorithm, and the alternating direction method of multipliers [4, 12, 19, 22]. A
clear advantage of the method we propose here is its stability---see subsection 7.1 and the
comments at the end of section 7.

7. Numerical results. We present in this section various experimental results for image
denoising and deblurring using the proposed methods. These help further to validate the the-
oretical findings, compare the convergence rates of MHDM and tighter MHDM, and evaluate
the stopping criteria. The experiments employ the stopping index k\ast (\delta ) determined by the
discrepancy principle (3.5) for MHDM and (4.16) for tighter MHDM.

7.1. MHDM and tighter MHDM for deblurring. First, MHDM and the tighter version
of MHDM are applied to image deblurring. As shown in Figure 1, f is the blurred version
of the original image z obtained by applying the 5 \times 5 Gaussian blur window with variance
2. The root mean square error (RMSE) defined as follows is used to evaluate the deblurring
results:

(7.1) RMSE =
| | xk  - z| | 

N
,

where | | \cdot | | is the Euclidean norm and N is the total number of pixels in the image.

z
x

0
 (MHDM) x

5
 (MHDM) x

20
 (MHDM)

f
x

0
 (Tight MHDM) x

5
 (Tight MHDM) x

20
 (Tight MHDM)

Figure 1. Deblurring results of the image with Gaussian blur (variance = 2).D
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The value of \epsilon in total variation is used to avoid the singularity when | \nabla u| = 0, so \epsilon 2

is chosen as a small number close to 0, namely \epsilon 2 = 10 - 6 here. This numerical experiment
shows that the greater the \epsilon , the lower the errors, but the difference is not obvious. As the
value of k increases, the difference gets smaller, so that it can be ignored. The time step size
used in this paper is \Delta t = 0.025. However, the results are not very sensitive to the choice of
\Delta t. For example, if we change \Delta t from 0.025 to 0.01, the RMSE decreases around 5 \times 10 - 5

for each k. On the other hand, if \Delta t increases up to \Delta t = 2, the algorithms are still stable
and the results still converge. The parameter \lambda k can adjust the weights of the fidelity term
and the regularizing term. The smaller the \lambda k, the more cartoon the uk preserves. The larger
\lambda k can keep more texture details of the image in uk. To restore blurred images without noise,
\lambda 0 = 1 is used for both algorithms, while for denoising images in subsection 7.2, a smaller \lambda 0

is used so that the regularizing weight can be increased. Recall that \lambda k = 2k\lambda 0 for MHDM;
\lambda k = 3k\lambda 0, ak = 1

(k+1)3/2
, k \geq 0 for tighter MHDM, so that (4.1), (4.3), (4.10), and (4.7) can

be satisfied. The grid size is h = 1.
We let N = 2562 for the image used in Figure 1. As shown in Figure 2, | | Txk  - f | | for

deblurring decreases as k increases, which means limk\rightarrow \infty Txk = f . However, from the RMSE
curves we can see that, as k exceeds 30, the RMSE for MHDM begins to slightly increase.
That means (xk) does not converge to z for MHDM. The deblurred images using both methods
as k increases can also be seen in Figure 1. Overall, the deblurring effects are similar for both
methods. However, when k becomes relatively large, compared to its tighter version, MHDM
produces more contour-like error fluctuations along the edges of the person and tripod.

7.2. MHDM and tighter MHDM for denoising. Both methods are applied to denoising
the noisy images f \delta with zero-mean additive Gaussian noise. In this case, T = I, so the
original image is z = f . Gaussian noise of different variances is added to f .

Recall that the stopping index k\ast (\delta ) is determined by (3.5) for MHDM and (4.16) for
tighter MHDM. Note that for some specific f \delta , the value of k\ast decreases as \tau increases, which
means that larger \tau can result in an earlier stopping. In all the numerical experiments, the
value of \tau is defined by

(7.2) \tau := min\{ \~\tau , s.t. \~\tau > 1 and \exists k \in \BbbN : \| Txk  - f \delta \| 2 \geq \~\tau \delta 2\} , for MHDM,

and
(7.3)
\tau := min\{ \~\tau , s.t. \~\tau > 1 and \exists k \in \BbbN : \| Txk  - f \delta \| 2 + akJ(xk) \geq \~\tau \delta 2\} , for tighter MHDM.

0 10 20 30 40 50
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Figure 2. | | Txk  - f | | and RMSE using MHDM and tighter MHDM for deblurring.D
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Therefore, by using the definition above, the value of \tau depends on the noise level. For
example, if the noise variance is 10 - 2, then \tau = 1.0157 for MHDM, and \tau = 1.0303 for tighter
MHDM; if the noise variance is 10 - 3, then \tau = 1.5166 for MHDM, and \tau = 1.8064 for tighter
MHDM.

As discussed after (2.7), if a small \lambda 0 is used, a good restoration cannot be obtained until
a large enough value of k is reached. However, if \lambda 0 is relatively big, it is possible that there
doesn't exist a k that satisfies (3.5) or (4.16). On the other hand, as mentioned earlier, bigger
\lambda 0 leads to a more textured restoration image. Therefore, if a large \lambda 0 is used for denoising,
there will be a greater possibility of retaining more noise in initial stages, which is contrary
to our intention of denoising. Thus, compared to deblurring, we use a smaller \lambda 0 = 0.01 for
denoising using MHDM and tighter MHDM. The values of all the other parameters are the
same as those in the previous (deblurring) case.

7.2.1. MHDM for denoising. We first denoise the image f \delta which is obtained by adding
Gaussian noise to the original image z from Figure 1. The results are shown in Figure 4. The
error | | xk - f | | of MHDM versus k with different noise levels is shown in Figure 3. To determine
k\ast (\delta ) we use (3.5), and \delta satisfying (3.2) is calculated as \delta = | | f  - f \delta | | in all the numerical
experiments in this section. Noise variance values 10 - 2, 10 - 3, 10 - 4, and 10 - 5 correspond to
\delta = 6238, 2045, 656, 220 respectively.

From Figure 3 we can see that as the value of k increases, the errors first decrease and then
increase, which is especially obvious when the noise variance is relatively big. This illustrates
the importance of setting up the stopping rule (k\ast (\delta ) is marked by a red asterisk). Figure 3
shows that the value of k\ast increases as \delta decreases. This shows that an early stopping criterion
is necessary to prevent error propagation.

The semiconvergence behavior mentioned in the introduction is clearly seen in some figures,
thus justifying the earlier stopping. Note that the stopping index is pretty close to the index
kmin := argmin\{ \| xk  - f\| , k \in \BbbN \} for MHDM and tight MHDM for the denoising problem---
see subsection 7.2.2. Although we did not prove the semiconvergence with respect to this
distance, we observe graphically that the analyzed procedures produce for a while better and
better approximations of the solution, up to some index, when the iterates start to be less
and less meaningful.

0 1 2 3 4 5 6 7 8 9

k

0

1000

2000

3000

4000

5000

6000

||
x k

-f
||

MHDM (Gaussian Noise)

variance=10-2

variance=10-3

variance=10-4

variance=10-5

Figure 3. Errors of denoising results of the cameraman image with different levels of Gaussian noise using
MHDM. k\ast is marked by a red asterisk, kmin is marked by red squares.D
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Figure 4. MHDM denoising results of the cameraman image with Gaussian noise (variance = 10 - 3),
\delta = 2045.

In this example, for certain \delta , k\ast < kmin. Even though k\ast is not always equal to kmin,
the difference between | | xk\ast  - f | | and | | xkmin

 - f | | is acceptable---the details of the difference
between xk\ast and xkmin

, as well as vk\ast and vkmin
with \delta = 2045, can be seen in Figure 4. In

order to show fine features more clearly, all residual images in this paper are scaled to the full
range of the intensity. We can also see that if the MHDM does not stop earlier at k\ast = 2,
then, e.g., the denoised image x9 has more noise than xk\ast . The decomposition components
uk, k = 0, 1, 2, 3, 4, are also shown in Figure 5. Since xk =

\sum k
j=0 uj , in this case, u1 and u2

clearly reveal the difference between x0 and xk\ast . Similarly, u3 and u4 reveal the difference
between xk\ast and xkmin

. Therefore, by comparing xk\ast with x0 and xkmin
, it can be seen that

the MHDM can sharpen edges while denoising, and the early stopping rule can keep most
edge details while removing most of the noise.

7.2.2. Tighter MHDM for denoising. The tighter version of MHDM is first used to
denoise the same noisy images as we used in subsection 7.2.1. As shown in Figure 6, the tighter
MHDM gives similar results as MHDM. In this case, k\ast is determined by (4.16). Compared
with kmin, k

\ast is very well predicted. Here k\ast = kmin  - 1 for variance = 10 - 2, 10 - 3, 10 - 4, and
k\ast = kmin for variance = 10 - 5.

The convergence behaviors of MHDM and tighter MHDM with respect to \delta are compared
in Figure 7. The RMSEk\ast (\delta ) is defined as follows:

(7.4) RMSEk\ast (\delta ) =
| | xk\ast (\delta )  - z| | 

N
,

where z = f when T = I. The strict convergence is measured by the metric

(7.5) d(xk\ast (\delta ), z) = | | xk\ast (\delta )  - z| | 1 + | J(xk\ast (\delta ))  - J(z)| .D
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Figure 5. MHDM decomposition components for denoising the image with Gaussian noise (variance =
10 - 3), \delta = 2045.
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Figure 6. Errors of denoising results of the cameraman image with different levels of Gaussian noise using
the tighter MHDM. k\ast is marked by a red asterisk, kmin is marked by a red circle.

From Figure 7 we can see that the RMSE convergence rate of tighter MHDM is a little
bit higher than MHDM. Figure 7 also shows that tighter MHDM has much better strict
convergence rate than MHDM.

In order to further validate the effectiveness of the tighter MHDM and its early stopping
criterion for image denoising, we use it to restore another noisy image f \delta in Figure 8. The
noisy image f \delta is degraded by adding Gaussian noise with variance = 10 - 3 to the original
circuit board image z. In this example, k\ast = 1 and kmin = 2. When k = 0, 1, 2, RMSE =
0.0197, 0.0136, 0.0106, d(xk, z) = 2.33\times 106, 1.70\times 106, 1.19\times 106, respectively. From Figure
8, we can see that the details of the circuit board in x1 are much clearer than in x0. It can
be observed that x1 retains most of the edge information. Comparing x1 with x2 in Figure 8,D
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Figure 7. Comparison of convergence rates and strict convergence rates of MHDM and tighter MHDM for
denoising based on the index stopping rule.
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Figure 8. Denoising results of the circuit image with Gaussian noise (variance = 10 - 3) using tighter
MHDM. Here \delta = 3559, N = 448\times 464. (Original image courtesy of Joseph E. Pascente, Lixi Inc.)

we can see that the loss of edge details in x1 is acceptable. So the early stopping rule is very
reasonable.

7.3. MHDM and tighter MHDM for deblurring-denoising. In this subsection, both
methods are applied and compared when restoring images degraded by both noise and blur.
First, we still use the same original cameraman image z from Figures 1 and 4, where 5 \times 5
window Gaussian blur (of variance 2) and zero-mean Gaussian noise of different variance levels
are added. All the parameters have the same values as in subsection 7.1.

The RMSE and d(xk, z) = | | xk - z| | 1+ | J(xk) - J(z)| versus k are shown in Figure 9. Noise
variance values 10 - 3, 10 - 4, and 10 - 5 correspond to \delta = | | f - f \delta | | = 2048, 657, 219, respectively.
The phenomenon of error accumulation is more obvious when \delta is larger. Overall, the tighter
MHDM gives better performance than MHDM. As shown in Figure 10, both methods haveD
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Figure 9. Errors of debluring-denoising results of image with Gaussian blur (variance = 2) and zero-mean
Gaussian noise with different variances. k\ast is marked by a red asterisk.
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Figure 10. Comparison of convergence rate and strict convergence rate of MHDM and tighter MHDM for
deblurring-denoising based on the index stopping rule.

similar RMSE convergence rates, and the strict convergence behavior of tighter MHDM is
better than MHDM.

When \delta = 2048, corresponding to the first two plots in Figure 9, as well as the last square
point in Figure 10, there doesn't exist a k \in \BbbN satisfying (3.5) using MHDM. Therefore, we let
k\ast = 0 for MHDM in this case. This is also the reason why the curve of MHDM in Figure 10
does not increase monotonically.

According to the curves of RMSE and d(xk, z) in Figure 9, the k\ast for MHDM seems not so
well predicted as for tight MHDM. However, from the 1-norm curves as shown in Figure 11,
we can see that k\ast is close to the k that minimizes | | xk  - z| | 1. It is shown in Figure 12 that
| | xk\ast (\delta )  - z| | 1 decreases as \delta decreases.

Figure 13 shows that the restored image xk\ast obtained by using MHDM is more blurred
than the one using tighter MHDM, because k\ast determined by (3.5) is less than that determined
by (4.16). The detailed difference of vk\ast using both methods can also be noticed in Figure 13.
The restored images x15 (k\ast < 15) using both methods obviously have more noise than xk\ast .
In addition, the image x15 obtained by MHDM is noisier than the one obtained by tighterD
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Figure 11. 1-norm errors of MHDM for deblurring-denoising the image with Gaussian blur (variance = 2)
and zero-mean Gaussian noise (variance=10 - 3, 10 - 4, 10 - 5); k that has minimum | | xk  - z| | 1 is marked by a red
square, and k\ast is marked by a red asterisk.
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Figure 12. Convergence rate (1-norm) of MHDM for deblurring-denoising based on the index stopping rule.
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Figure 13. Deblurring-denoising results and vk\ast of both methods for the image with Gaussian blur (variance
= 2) and Gaussian noise (variance=10 - 4, \delta = 657).

MHDM. Also, it can be seen in Figure 9 that errors of xk using MHDM are greater than those
from tighter MHDM when k is relatively large. This illustrates that the tighter version can
better suppress error propagation in this example.D
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z f

x
k*

 (MHDM) x
k*

 (Tight MHDM)

Figure 14. Deblurring-denoising results of the image with Gaussian blur (variance = 2) and normally
distributed random noise (\delta = 1128). Here N = 5122, \lambda 0 = 0.1, \Delta t = 0.01, k\ast = 2 for MHDM, and k\ast = 3 for
tighter MHDM.

We restore another degraded image f \delta in Figure 14 using both algorithms, where f \delta is
obtained by applying Gaussian blur and additive normally distributed random noise to the
original image z. One observes that xk\ast using tighter MHDM retains more edge information
than using MHDM, which can be more clearly observed in Figure 15. Here RMSEk\ast = 0.030,
d(xk\ast , z) = 5.93 \times 106 for MHDM and RMSEk\ast = 0.029, d(xk\ast , z) = 5.63 \times 106 for tighter
MHDM. It can also be seen in Figure 15 that x10 shows more edge details but is noisier than
xk\ast . When k = 10, RMSE = 0.032, d(x10, z) = 3.85\times 106 for MHDM and RMSE = 0.034,
d(x10, z) = 3.42\times 106 for tighter MHDM.

7.4. A refinement of the tight MHDM for deblurring-denoising. The effects of a refined
version of the tight MHDM for deblurring-denoising are tested in this subsection by replac-
ing each Rk(u) in (5.1) with the weaker texture norm | | u| | \ast , while for J the total variation
seminorm is considered. Note that (5.3) is fulfilled in this case; cf. [26, p. 73].

To compare with MHDM and the original tight MHDM, the refined tight MHDM is first
applied to deblurring-denoising the degraded image f \delta (blurred image with random noise) in
Figure 14. All the parameters, including iteration number, used in this example are the same
as in the original tight MHDM. Numerical results show that the restored image xk obtained
by the refined version can preserve better texture features than the other two methods for
each k. By looking at the details of x1 shown in Figure 16, for example, we can see that the
refined version restores texture of the image better than the other two methods. In addition,
the refinement version also produces smaller RMSE and metric d(x1, z).
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Figure 15. Right upper corner of the restoration of f\delta in Figure 14; k\ast = 2 for MHDM and k\ast = 3 for
tighter MHDM.
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Figure 16. Details of the restoration images x1 of f\delta in Figure 14 using MHDM (RMSE =
0.0304, d(x1, z) = 6.06 \times 106), tight MHDM (RMSE = 0.0298, d(x1, z) = 6.03 \times 106), and the refinement
of tight MHDM (RMSE = 0.0293, d(x1, z) = 5.53\times 106).D
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We further compare these three versions of MHDM by deblurring and denoising Gaussian
blurred (variance=2) and Gaussian noisy (variance=10 - 4) images as shown in Figures 17 and
18. Here, \lambda 0 = 0.05, \Delta t = 0.025 for restoring both images.

Figure 17 shows the restored images xk\ast obtained by these methods following the stopping
rules. The refined version still keeps better texture than the others, which can be seen from
both xk\ast and the residual images vk\ast . It also has smaller restoration errors as explained in
the caption of Figure 17. It cannot be ignored that the better texture and smaller errors of
the refined version are also based on fewer iterations k than in the other two methods.

It is worth mentioning that the weaker norm | | u| | \ast can also preserve the noise, being of
an oscillatory nature. Therefore, to prevent error accumulation caused by noise, the refined
version usually stops earlier than the other two versions, which means k\ast of the refined version
is smaller. This observation can be verified by both deblurring-denoising examples. In the
tungsten filament image restoration example, k\ast = 4, 3, 2 for MHDM, the tight MHDM, and
the refined tight version, respectively. In the pollen image example, k\ast = 2 for the refined
version, which is also smaller than MHDM (k\ast = 5) and the tight MHDM (k\ast = 4).

The restoration errors of the pollen image in Figure 18 can be seen in Figure 19. These
error plots also reveal the reason why the refined version stops earlier than the other two
versions. According to the numerical results, using the refined version, the texture can be well
preserved with small errors even in the first several iterations of xk. From Figure 18 we can

z
x

k*
 (k*=4, MHDM) x

k*
  (k*=3, Tight MHDM) x

k*
  (k*=2, Refinement)

f
v

4
 (MHDM) v

3
 (Tight MHDM) v

2
 (Refinement)

Figure 17. Degraded image of magnified tungsten filament and support with Gaussian blur and Gaussian
noise. The restoration images xk\ast and residuals vk\ast of f\delta using MHDM (RMSEx4 = 0.0225, d(x4, z) =
5.087 \times 105), tight MHDM (RMSEx3 = 0.0220, d(x3, z) = 4.937 \times 105), and the refinement of tight MHDM
(RMSEx2 = 0.0218, d(x2, z) = 3.779 \times 105). (Original image courtesy of Michael Shaer, Department of
Geological Sciences, University of Oregon, Eugene.)D
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z
x

0
  (Tight MHDM) x

2
  (Tight MHDM) x

k*
  (k*=4, Tight MHDM)

f
x

0
  (Refined Tight MHDM) x

k*
  (k*=2, Refined Tight) v

k*
 (k*=2, Refined Tight)

Figure 18. Degraded image of magnified pollen with Gaussian blur and Gaussian noise. Comparison of the
restoration images of f\delta using the tight MHDM and the refined tight MHDM. (Original image courtesy of Dr.
Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)
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Figure 19. Errors of deblurring-denoising results of the degraded pollen image.

see that the restored image x0 of the refined tight version is much better than the original
tight version, and it is even better than x2 of the tight MHDM. This can also be observed in
the error plots in Figure 19.

As seen in subsections 6.1 and 6.2, calculation of the refined tight MHDM is more com-
plicated than that of the tight MHDM. The execution CPU time of each iteration of the
refined tight MHDM is about 45\% longer than in the case of the tight MHDM. However, as
mentioned before, the refined tight version stops earlier, so in fact the overall running time of
the compact version is shorter than for the tight MHDM. Take the restoration in Figure 18,
for example, where the CPU running time of three iterations (k\ast = 2) of refined tight MHDM
is about 14\% less than five iterations (k\ast = 4) of tight MHDM.

We also apply the refined tight MHDM to restoring the degraded image f \delta with disk-
shaped blur kernel [21] of radius r = 3 and Gaussian noise of standard deviation \sigma = 0.01,D
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                            z                                    TV Deconvolution ( =16443.9)    Refined Tight MHDM (
0
=16443.9)

                            f                                   TV Deconvolution ( =991.65)          Refined Tight MHDM (
0
=0.05)

Figure 20. The first column: original image z and degraded image with disk-shape blur (radius = 3) and
Gaussian noise (\sigma = 0.01). The second column: restoration images using total variation deconvolution with
the split Bregman algorithm with optimal \lambda = 16443.9 and \lambda = 991.65. The third column: restoration images
x3(k

\ast = 3) using MHDM with \lambda 0 = 16443.9 and \lambda 0 = 0.05.

which is shown in Figure 20. We compare the refined tight MHDM to the ROF total variation
deconvolution with the split Bregman algorithm [21]. In [21], a method for estimating the
optimal fidelity weight \lambda is proposed, and the optimal \lambda is determined by r and \sigma . However,
the optimal value of \lambda is big when \sigma is small. As shown in Figure 20, oscillation artifacts appear
in the restoration image using total variation deconvolution with the optimal \lambda = 16443.9,
and RMSE = 0.0726. We tested the total variation deconvolution with different values of
\lambda . A better image restoration can be obtained with \lambda = 991.65, and RMSE = 0.0243. In
contrast, the refined tight MHDM is insensitive to the value of \lambda 0. No matter if \lambda 0 = 16443.9
(which is the same as the optimal fidelity weight value of total variation deconvolution) or
\lambda 0 = 0.05, we can get a better image xk\ast (k

\ast = 3), as shown in the last column of Figure 20.
Both values of \lambda 0 yield RMSEx0 = 0.0243 and RMSEx3 = 0.0210, the latter being smaller
than for the total variation deconvolution. Thus, the refined tight MHDM is very robust and
effective.

8. Conclusion. The theoretical findings in this work complete existing results about the
MHDM previously proposed and studied in [37], [38], and [27]. More precisely, we derive
error estimates and early stopping criteria in the case of perturbed or noisy data. These
are supported by our numerical experiments, which also compare the original MHDM and
the tighter version, and show that the tighter version performs better in practice in terms
of convergence rate and restoration quality. Moreover, a refinement of the tight MHDM is
proposed, which preserves texture better during the restoration process.D
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As future plans, we would like to extend this analysis to the case of nonquadratic data-
fitting terms and to nonlinear problems. We plan also to develop and test more broadly the
refined tight MHDM.
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